# **Composites Research and Technology For Aerospace Vehicles**

Mark J. Shuart • NASA Langley Research Center

Presented at the Aerospace Materials 1999 Conference & Exhibition September 9-10, 1999

Toulouse, France

## **Outline**

Today's Lessons Learned

Materials and Structures Technology Development

Future Materials and Structures Applications

## Materials, Processes, and Manufacturing

#### **Lessons Learned**

- 1. Materials development in conjunction with product development creates undue risks.
- 2. Experienced materials and processing engineers should be included in the design phase and must be readily available to correct problems in production processes.
- 3. Manufacturing process scale-up development tests should be conducted to optimize the production processes.
- 4. Co-curing and co-bonding are preferred over secondary bonding which requires near perfect interface fit-up.
- 5. Mechanically fastened joints require close tolerance fit-up and shimming to assure a good fit and to avoid damage to the composite parts during assembly.
- 6. Dimensional tolerances are more critical in composites than in metals to avoid damage to parts during assembly. Quality tools are essential to the production of quality parts.
- 7. Selection of the tool material depends on part size, configuration, production rate, quantity, and company experience.
- 8. Tool designers should anticipate the need to modify tools to adjust for part springback, ease of removal, or maintain dimensional control of critical interfaces.

## Structural Design, Analysis, and Testing

#### **Lessons Learned:**

- 1. Design and certification requirements for composite structure are generally more complex and conservative than for metal structure.
- 2. Successful programs have used the building-block approach with a realistic schedule that allows for a systematic development effort.
- 3. The use of basic laminates containing 0/90/+45/-45 plies with a minimum of 10% of the plies in each direction is well suited to most applications.
- 4. Mechanical joints should be restricted to attachment of metal fittings and situations where assembly or access is impractical using alternative approaches.
- 5. Large, co-cured assemblies reduce part count and assembly costs but may require complex tooling.
- 6. Structural designs and the associated tooling should be able to accommodate design changes associated with the inevitable increases in design loads.
- 7. Understanding and properly characterizing impact damage would eliminate confusion in the design process and permit direct comparison of test data.

## **Quality Control, NDE/I, and Supportability**

#### **Lessons Learned:**

- 1. Automated processes can help to reduce QC costs.
- 2. Inspection and quality control should focus on aspects of the process and part that have a direct bearing on part performance.
- 3. Determine and understand the effects of defects on part performance.
- 4. Supportability should be addressed during design so that composite structures are inspectable, maintainable and repairable.
- 5. Most damage to composite structure occurs during assembly or routine maintenance of the aircraft.
- 6. Repair costs are much higher than for metal structures.
- 7. Improved Standard Repair Manuals are needed for in-service maintenance and repair.
- 8. Special long-life and low-temperature curing repair materials are required.
- 9. Moisture ingestion and aluminum core corrosion are recurring supportability problems for honeycomb structures.

## Predicted Weight Savings from Incorporation of Advanced Technologies



Major Weight & Cost Reductions are Possible from Advanced Airframe Structures and Materials!

## **Evolution of Composite Resin Development: Intermediate & High Temperature Resins**



## **Computationally Designed Materials and Structures**

## **NASA Computational Materials Program**

Computational Chemistry Computational Materials Computational Structural Mechanics

Composite

Structural

**Mechanics** 

Quantum Physics



Molecular Mechanics



Polymer Micromechanics



 $\mathbb{M}$ 

Composite Micromechanics



Polymer Chemistry

**Qualitative Predictions** 

**Quantitative Predictions** 



- Electrons Nuclei
- Molecular fragments
- Molecular weight
- · Bond angles · Free volume
  - · Crosslink density
- Constituent level heterogeneity
- Material level damage

Length,m  $10^{-10}$   $10^{-8}$   $10^{-6}$   $10^{0}$   $10^{2}$  Time,s  $10^{-12}$   $10^{-9}$   $10^{-6}$   $10^{-3}$   $10^{0}$ 

## **Low-Cost Composites Processing of the Future**



## Global/Local Analysis for Predicting Structural Behavior

### **Analysis Methodology**

## **Global Shell** ₽N× Stiffened **Panel** Local **Detailed Stresses Local Panel Details**

### **Predicted Behavior**



# **Advancing NDE Technologies Toward Complex Structures**



## NASA Technology Readiness Levels (TRL)



## **Assessment of Technology Needs for an RLV**

#### **Leading Edges / Nose Caps**

- Refractory composites (TRL=9)
- Hot-structure control surfaces (TRL=5)

#### **Thermal Protection System**

- High temperature metallics (TRL=5)
- Refractory composites (TRL=4)
- Advanced flexible insulation (TRL=6)



#### **Primary Structure**

- High-temperature metal composites (TRL=4)
- Noncircular composite shell structures (TRL=3)
- Joints and attachment techniques (TRL=4)
- Nondestructive evaluation (TRL=4)
- Manufacturing technology (TRL=4)

#### **Cryotanks**

- Sandwich construction (TRL=4)
- Nonautoclave curing (TRL=3)
- Nondestructive evaluation (TRL=4)
- Vehicle health monitoring (TRL=3)
- Integrated TPS / cryoinsulation (TRL=2)

# A Complete Integrated Structures and Materials Program for RLV Airframe Systems



## **Programs, Products, and Services for 2009**

### 1. Application-Specific Aero-space Programs

- Affordable "Point-to-Point" Personal Aircraft
- Large Transport Aircraft (e.g., Blended-Wing Body)
- Sensorcraft
- Lunar/Mars Transportation Vehicles for Human Exploration

### 2. Brilliant Products and Systems

- Multifunctional Materials and Structures
- Highly-Integrated Instruments and Structures for Sensorcraft
- Ultra-Smart Materials and Structures
- Radiation Effects and Radiation Shielding Materials

### 3. Computing, Design, and Analysis Methods and Tools

- Optical, Quantum, and Biological Computers
- Fully Immersive Concept-To-Flight Design Environment
- Flexible Integration of Modeling and Design Techniques
- Intelligent agents, Fuzzy, and Nondeterministic Analysis Methods

### 4. Experimental Methods and Test Techniques

- Remote access to facilities and laboratories through virtual reality
- Automated, Digitally-Controlled Testing Techniques

### Structures & Materials Skills Evolution

- Classical metals, polymers, ceramics, and composites development skills transitioning to nano-, smart-, functionally graded, multifunctional, environmentally friendly, computational, and biomimic designed M&S systems
- Classical applied mechanics, dynamics, aeroelasticity, and computational methods skills transitioning to multidisciplinary computational aero-servo-thermal-structure-materials methodology; and mathematically nondeterministic, nonlinear, fuzzy, probabilistic, design and analysis tools
- Traditional point-by-point external diagnostic sensors skills transitioning to intelligent, distributed, in-situ diagnostic, and self-healing systems.

## Areas of Expertise at NASA Langley Research Center

- **AoE 1**. Develop advanced <u>materials and processing technologies</u> to enable the fabrication of low-cost and high-performance structural concepts for aerospace applications.
- **AoE 2.** Conduct research and technology development that accurately and efficiently predict behavior, durability and damage tolerance, evaluates concepts, and validates performance of advanced materials and structures for aerospace structural applications.
- **AoE 3**. Conduct research and technology development for advanced **sensors**, **intelligent systems**, **and ground operations** to ensure structural integrity, reliability, and safety for aerospace vehicles.
- **AoE 4**. Conduct research and technology development to quantify and control **aeroelastic response**, **unsteady aerodynamic** flow phenomena, **and structural dynamics** behavior for aerospace vehicles.

## **Concluding Remarks**

- New materials, processing, structural concepts, and sensors will enable dramatically improved applications
- Reusable launch vehicles and future spacecraft will demonstrate advanced materials and structures technologies

## Development of Advanced Cryotank and Airframe Structures Building-Block Approach

- Mechanical Properties
- H2 Permeability tests (4 in. x 4 in.)
- Flatwise Tension Tests (2 in. x 2 in.)









Manufacturing Process
Development and Scale-up







- Gr-Ep/Foam Panel (LaRC TEEK HH)
- Thermally Cycled PMC/Foam Insulation
- Fluted Core Splice Joint



## **Application of LaRC-Developed Materials**



## Tethers for Propellant-Free Propulsion

- Atomic Oxygen Resistance
- High Specific Strength
- Selected for ProSEDS Flight Demonstration



## Solar Thermal Propulsion Upperstage

- Low Color, Low Solar Absorption
- High Reflectivity
- Selected for Primary Collector on Boeing's SOTV

## New/Enhanced Facilities Required for 2009

- Cargo hold and fuel tank explosions
- Modify Aircraft Landing Dynamics Facility (high load, high speed, larger tires)\*
- High-temperature and cryo-temperature capability for COLTS\*
- Electro-Magnetic upgrade to TDT\*
- Hypersonic flow simulation (ARC Jet)
- Nano-sensor facility\*
- In-Situ Materials Processing Lab
- Laser Deposition Fabrication Lab
- High-conductivity property characterization
- Advanced automated materials manufacturing lab
- Biochemistry Lab\*
- Large graphitization fabrication facility
- Free-form fabrication facility
- Large brazing fabrication facility
- Rapid prototyping fabrication lab
- 3-D virtual reality computational test lab\*

<sup>\*</sup>Facilities located at LaRC

## **Evolution of Composite Resin Development:** *Epoxies*

